
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

Code Profiling

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor

Performance
 Programs should:

solve a problem correctly

be readable

be flexible (for future modifications)

be fast

be lean (use the least amount of memory necessary)

 Hardware becomes faster and more capable, but data is

more.

program efficiency is still an issue

software expectations continue to increase

 2

(c) Paul Fodor

When not to optimize
 Make sure you only optimize when necessary

 Why not just be responsible and always optimize?

optimization is a good way to introduce bugs 

some techniques decrease the portability of your code

you can expend a lot of effort for little or no results

optimization makes the code less readable!

 Increases complexity and the difficulty of debugging.

optimization can be hard to do properly

 optimization is a moving target

 Donald Knuth famously said:

 "Premature optimization is the root of all evil."

3

(c) Paul Fodor

So what is optimizing?
 Simply, the process of modifying a system to improve it’s

performance

 Why does Donald Knuth hate it?

 because all the optimization in the world can never replace the

wise selection of proper data structures and the proper use of

efficient algorithms

 Donald Knuth is credited with creating the rigorous academic

discipline of algorithm analysis

 John Carmack might say, because he never made Doom with

tight hardware constraints: optimization is commonly done during

graphics-intensive game development because few other programs have the

performance requirements that games do
 He had to make use of several tricks for these features to run smoothly on home computers of

1993: the levels were not truly three-dimensional (they were internally represented on a single

plane, with height differences stored separately as displacements. 4

(c) Paul Fodor

Optimization Options
• What options are available?

–Design for Speed - select your data

structures & algorithms wisely!

–Use a code profiler

–Use automatic optimizers

–Implement low-level code

optimizations

 5

(c) Paul Fodor

Design for Speed
 In the process of designing a program:

 Identify operations needed in each class before choosing your

data structures.

Pick a data structure that can be used to perform such

operations efficiently.

 Select a solid algorithm that fits the problem and the data:

Big O notation.

 It may not be always possible to know what is the best choice:

Choice may depend on amount of data and the frequency of

its use.

Choices may trade off readability and maintainability for

speed or memory performance.

6

(c) Paul Fodor

Program Hot Spots
 “90% of the time is spent in 10% of the code.”

 When the choice of “best” data structure or algorithm is not

clear at design time:

use the simplest data structure or algorithm,

collect data about the impact of the data structure or

algorithm on the overall speed of the program.

 Identify the portion of the code that takes the most time or

memory.

 Replace that section, if possible, with a better data

structure or algorithm

based on the “frequency of use” data you have collected.

7

(c) Paul Fodor

What’s a profiler?
 A profiler is a program that can track the performance of

another program by checking information collected

while the code is executing:

can usually track time used or frequency of use of code

portions (random sampling with a parallel thread),

 the entire application or just select methods.

 Types of profiling:

CPU performance profiling,

Memory profiling,

Threads profiling,

Memory leak profiling.

8

(c) Paul Fodor

Java Profilers & Optimizers
 Eclipse

 Eclipse Test and Performance Tools Platform Project (TPTP)

 http://www.eclipse.org/tptp/index.php

 Eclipse Colourer, by Konstantin Scheglov – a free plugin from

sourceforge.net

 http://sourceforge.net/projects/eclipsecolorer

 http://www.theserverside.com/news/1364402/Code-Analysis-

with-the-Eclipse-Profiler

 NetBeans

 http://profiler.netbeans.org - uses JFluid technology

 Borland’s Optimizeit (for Java, &.NET, etc …)

 http://techpubs.borland.com/optimizeit/index.html

 JProbe by Quest Software (acquired by Dell in 2012)

 http://www.quest.com 9

http://www.eclipse.org/tptp/index.php
http://www.eclipse.org/tptp/index.html
http://sourceforge.net/projects/eclipsecolorer
http://sourceforge.net/projects/eclipsecolorer
http://www.theserverside.com/news/1364402/Code-Analysis-with-the-Eclipse-Profiler
http://www.theserverside.com/news/1364402/Code-Analysis-with-the-Eclipse-Profiler
http://www.theserverside.com/news/1364402/Code-Analysis-with-the-Eclipse-Profiler
http://www.theserverside.com/news/1364402/Code-Analysis-with-the-Eclipse-Profiler
http://www.theserverside.com/news/1364402/Code-Analysis-with-the-Eclipse-Profiler
http://www.theserverside.com/news/1364402/Code-Analysis-with-the-Eclipse-Profiler
http://www.theserverside.com/news/1364402/Code-Analysis-with-the-Eclipse-Profiler
http://www.theserverside.com/news/1364402/Code-Analysis-with-the-Eclipse-Profiler
http://www.theserverside.com/news/1364402/Code-Analysis-with-the-Eclipse-Profiler
http://www.theserverside.com/news/1364402/Code-Analysis-with-the-Eclipse-Profiler
http://www.theserverside.com/news/1364402/Code-Analysis-with-the-Eclipse-Profiler
http://www.theserverside.com/articles/article.tss?l=EclipseProfiler
http://profiler.netbeans.org/
http://techpubs.borland.com/optimizeit/index.html
http://www.borland.com/optimizeit/
http://www.quest.com/

(c) Paul Fodor

NetBeans Profiler Setup

10

(c) Paul Fodor

Collecting Performance Data using HProf

• Generate profile data on sample runs:
– java –classic –Xrunhprof Driver

– java –classic –Xrunhprof:cpu=samples Driver

• Analyze the profile data to find:

– Hot spots with respect to time

• Most frequently used methods

• Most time-consuming methods

– Bottlenecks

– Hot spots with respect to space (memory)

• Most frequently used portions of data structures

 11

(c) Paul Fodor

Profiling Example 1
import java.util.*;

public class TestHprof1 {

 public static ArrayList sortArrayList(){

 ArrayList list = new ArrayList();

 int num;

 for (int i = 0; i < 20000; i++) {

 num = (int)(Math.random() * 100000);

 list.add(new Integer(num));

 }

 Collections.sort((List<Integer>) list);

 return list;

 }

12

(c) Paul Fodor

 public static Vector sortVector() {

 Vector v = new Vector();

 int num;

 for (int i = 0; i < 20000; i++) {

 num = (int)(Math.random() * 100000);

 v.add(new Integer(num));

 }

 Collections.sort(v);

 return v;

 }

 public static void main(String[] args) {

 ArrayList list = sortArrayList();

 System.out.println(list.size());

 Vector v = sortVector();

 System.out.println(v.size());

 }

}
13

(c) Paul Fodor

Output of hprof
>java -classic -Xrunhprof:cpu=samples TestHprof1

Warning: classic VM not supported; client VM will be used

20000

20000

Dumping Java heap ... allocation sites ... done.

 Created 2 files:

 java.hprof.txt.TMP

 java.hprof.txt

CPU SAMPLES BEGIN (total = 13)

rank self accum count trace method

1 38.46% 38.46% 5 8 TestHprof.sortVector

2 23.08% 61.54% 3 4 TestHprof.sortArrayList

3 7.69% 69.23% 1 7 CollectionsComparison.main

4 7.69% 76.92% 1 2 java.lang.ClassLoader.checkCerts

5 7.69% 84.62% 1 6 java.util.AbstractList.listIterator

6 7.69% 92.31% 1 5 java.util.Arrays.mergeSort

7 6.67% 100.00% 1 4 sun.misc.AtomicLongCSImpl.attemptUpdate

CPU SAMPLES END

(remaining entries less than 1% each, omitted for brevity)

14

http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

(c) Paul Fodor

1. Execution of a Java program

typically involves many library
calls, making it difficult to gather
useful information from profiles.

2. Call graph information (frequency
of calls) is not given explicitly by
hprof or other Java profilers.
 15

Output of hprof
http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

(c) Paul Fodor

Additional Optimization Tools
• Compiler optimization

– Compilers already perform many optimizations

• Example: dead code elimination

• http://www.javaworld.com/javaworld/jw-03-2000/jw-03-javaperf_4.html

– can’t be used while debugging

• Just-In-Time compilers

– compiles only code necessary at runtime

• Optimizer tools (many times confused with profilers)

– Ex: jarg by SourceForge – reduces the size of a jar file in which
java class files are stored

• http://jarg.sourceforge.net/

– javac –O, the Java optimizer

– Optimizes compiled code by inlining static, final and private methods.

• Assembly code optimization?

 16

http://www.javaworld.com/javaworld/jw-03-2000/jw-03-javaperf_4.html
http://www.javaworld.com/javaworld/jw-03-2000/jw-03-javaperf_4.html
http://www.javaworld.com/javaworld/jw-03-2000/jw-03-javaperf_4.html
http://www.javaworld.com/javaworld/jw-03-2000/jw-03-javaperf_4.html
http://www.javaworld.com/javaworld/jw-03-2000/jw-03-javaperf_4.html
http://www.javaworld.com/javaworld/jw-03-2000/jw-03-javaperf_4.html
http://www.javaworld.com/javaworld/jw-03-2000/jw-03-javaperf_4.html
http://www.javaworld.com/javaworld/jw-03-2000/jw-03-javaperf_4.html
http://www.javaworld.com/javaworld/jw-03-2000/jw-03-javaperf_4.html
http://www.javaworld.com/javaworld/jw-03-2000/jw-03-javaperf_4.html
http://jarg.sourceforge.net/
http://jarg.sourceforge.net/

(c) Paul Fodor

Inlining using javac –O
 The Java optimizer works by inlining selected methods

 Inlining a method call inserts the code for the method

directly into the code making the method call

Eliminates the overhead of the method call

For a small method this overhead can represent a

significant percentage of its execution time

Only private, static, or final methods are eligible for

inlining

Synchronized methods won't be inlined

The compiler will only inline small methods typically

consisting of only one or two lines of code

17

(c) Paul Fodor

Machine Code
 javac compiles Java programs to the “machine

code” for the Java Virtual Machine (JVM)

directly calling this code can improve program

performance

 javap –c to dump out the JVM instructions

generated by the Java compiler (see if hand-

optimization is necessary)

gcc –S to dump assembly instructions generated

by the C compiler

 18

(c) Paul Fodor

javap Example: TestHprof1
> javap -c TestHprof1

Compiled from "TestHprof1.java"

public class TestHprof1 {

 public TestHprof1();

 Code:

 0: aload_0

 1: invokespecial #1 // Method java/lang/Object."<init>":()V

 4: return

public static void main(java.lang.String[]);

 Code:

 0: invokestatic #14 // Method sortArrayList:()Ljava/util/ArrayList;

 3: astore_1

 4: getstatic #15 // Field java/lang/System.out:Ljava/io/PrintStream;

 7: aload_1

 8: invokevirtual #16 // Method java/util/ArrayList.size:()I

 11: invokevirtual #17 // Method java/io/PrintStream.println:(I)V

 14: invokestatic #18 // Method sortVector:()Ljava/util/Vector;

 17: astore_2

 18: getstatic #15 // Field java/lang/System.out:Ljava/io/PrintStream;

 21: aload_2

 22: invokevirtual #19 // Method java/util/Vector.size:()I

 25: invokevirtual #17 // Method java/io/PrintStream.println:(I)V

 28: return

19

(c) Paul Fodor

public static java.util.ArrayList sortArrayList();

 Code:

 0: new #2; //class ArrayList

 3: dup

 4: invokespecial #3; //Method java/util/ArrayList."<init>":()V

 7: astore_0

 8: iconst_0

 9: istore_2

 10: iload_2

 11: sipush 20000

 14: if_icmpge 45

 17: invokestatic #4; //Method java/lang/Math.random:()D

 20: ldc2_w #5; //double 100000.0d

 23: dmul

 24: d2i

 25: istore_1

 26: aload_0

 27: new #7; //class Integer

 30: dup

 31: iload_1

 32: invokespecial #8; //Method java/lang/Integer."<init>":(I)V

 35: invokevirtual #9; //Method java/util/ArrayList.add:(Ljava/lang/Object;)Z

 38: pop

 39: iinc 2, 1

 42: goto 10

 45: aload_0

 46: invokestatic #10; //Method java/util/Collections.sort:(Ljava/util/List;)V

 49: aload_0

 50: areturn

20

(c) Paul Fodor

public static java.util.Vector sortVector();

 Code:

 0: new #11; //class Vector

 3: dup

 4: invokespecial #12; //Method java/util/Vector."<init>":()V

 7: astore_0

 8: iconst_0

 9: istore_2

 10: iload_2

 11: sipush 20000

 14: if_icmpge 45

 17: invokestatic #4; //Method java/lang/Math.random:()D

 20: ldc2_w #5; //double 100000.0d

 23: dmul

 24: d2i

 25: istore_1

 26: aload_0

 27: new #7; //class Integer

 30: dup

 31: iload_1

 32: invokespecial #8; //Method java/lang/Integer."<init>":(I)V

 35: invokevirtual #13; //Method java/util/Vector.add:(Ljava/lang/Object;)Z

 38: pop

 39: iinc 2, 1

 42: goto 10

 45: aload_0

 46: invokestatic #10; //Method java/util/Collections.sort:(Ljava/util/List;)V

 49: aload_0

 50: areturn

21

(c) Paul Fodor

JNI
 JNI – Java Native language Interface

 Standard programming interface for writing Java native methods and

embedding the JavaTM virtual machine into native applications.

 http://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/jniTOC.html

 used on really critical components.

 trade portability for performance

 also allows C/C++ programs to execute Java code

 JNI enables one to write native methods to handle situations when an application

cannot be written entirely in the Java programming language, e.g. when the standard

Java class library does not support the platform-specific features or program library.

 C code will also run faster than Java

 Some coders will use JNI to run bottlenecked parts of their programs in C

22

http://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/jniTOC.html
http://java.sun.com/docs/books/tutorial/native1.1/

(c) Paul Fodor

It is like using Assembly Code in C++

• Example method for a 32-bit memory fill funtion:
void qmemset(void *memory, int value, int num_quads){

_asm

{ CLD // clear the direction flag

 MOV EDI, memory // move pointer into EDI

 MOV ECX, num_quads // ECX hold loop count

 MOV EAX, value // EAX hold value

 REP STOSD // perform fill

}

}

…

qmemset(&buffer, 25, 1000);

• Inlining assembly should only be done if you can write
assembly code better than the compiler can generate it

 23

(c) Paul Fodor

Look-up Tables
Pre-computed values of some computation that

you know you’ll perform during run-time

 Simply compute all possible values at startup then

run the game

Common game look-up:

pre-compute sin & cos of all angles 0 – 359 degrees

place values in a simple array

 faster to look-up array values than perform

operation

24

(c) Paul Fodor

Fibonacci Numbers
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

 indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;

fib(1) = 1;

fib(index) = fib(index -1) + fib(index -2); for integers index >=2

25

fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1)

 = (1 + 0) +fib(1) = 1 + fib(1) = 1 + 1 = 2

(c) Paul Fodor
26

import java.util.Scanner;

public class ComputeFibonacci {

public static void main(String args[]) {

 // Create a Scanner

 Scanner input = new Scanner(System.in);

 System.out.print("Enter an index for the Fibonacci number: ");

 int index = input.nextInt();

 // Find and display the Fibonacci number

 System.out.println("Fibonacci(" + index + “) is " + fib(index));

 }

 /** The method for finding the Fibonacci number */

 public static long fib(long index) {

 if (index == 0) // Base case

 return 0;

 else if (index == 1) // Base case

 return 1;

 else // Reduction and recursive calls

 return fib(index - 1) + fib(index - 2);

 }

}

(c) Paul Fodor

Fibonnaci Numbers

27

return fib(3) + fib(2)

return fib(2) + fib(1)

return fib(1) + fib(0)

return 1

return fib(1) + fib(0)

return 0

return 1

return 1 return 0

1: call fib(3)

2: call fib(2)

3: call fib(1)

4: return fib(1)

7: return fib(2)

5: call fib(0)

6: return fib(0)

8: call fib(1)

9: return fib(1)

10: return fib(3)
11: call fib(2)

16: return fib(2)

12: call fib(1) 13: return fib(1)
14: return fib(0)

15: return fib(0)

fib(4)

0: call fib(4) 17: return fib(4)

(c) Paul Fodor
28

import java.util.Scanner;

public class ComputeFibonacciTabling { // NO REPEATED COMPUTATION

public static void main(String args[]) {

 Scanner input = new Scanner(System.in);

 System.out.print("Enter an index for the Fibonacci number: ");

 int index = input.nextInt();

 f = new long[n];

 System.out.println("Fibonacci(" + index + “) is " + fib(index));

 }

 public static long[] f;

 public static long fib(long index) {

 if (index == 0) return 0;

 if (index == 1) { f[1]=1; return 1; }

 if(f[index]!=0)

 return f[index];

 else // Reduction and recursive calls

 f[index] = fib(index - 1) + fib(index - 2);

 return f[index];

 }

}

(c) Paul Fodor

Optimization Guidelines
 Do NOT hand-optimize your code:

 if it unnecessarily sacrifices readability, OR

 if it unnecessarily sacrifices maintainability

 If an optimization is necessary, think data structures &

algorithms first

 Again, many common code optimizations are done by the

compiler.

 If it becomes necessary, find out what optimizations are done

automatically by the compiler you are using

 Compilers get smarter all the time...

 If you over-optimize, your fellow coders will hate you

 29

